20 research outputs found

    Utility-Based Mechanism for Structural Self-Organization in Service-Oriented MAS

    Full text link
    Structural relations established among agents influence the performance of decentralized service discovery process in multiagent systems. Moreover, distributed systems should be able to adapt their structural relations to changes in environmental conditions. In this article, we present a service-oriented multiagent systems, where agents initially self-organize their structural relations based on the similarity of their services. During the service discovery process, agents integrate a mechanism that facilitates the self-organization of their structural relations to adapt the structure of the system to the service demand. This mechanism facilitates the task of decentralized service discovery and improves its performance. Each agent has local knowledge about its direct neighbors and the queries received during discovery processes. With this information, an agent is able to analyze its structural relations and decide when it is more appropriate to modify its direct neighbors and select the most suitable acquaintances to replace them. The experimental evaluation shows how this self-organization mechanism improves the overall performance of the service discovery process in the system when the service demand changesThis work is partially supported by the Spanish Ministry of Science and Innovation through grants CSD2007-0022 (CONSOLIDER-INGENIO 2010), TIN2012-36586-C03-01, TIN2012-36586-C03-01, TIN2012-36586-C03-02, PROMETEOII/2013/019, and FPU grant AP-2008-00601 awarded to E. Del Val.Del Val Noguera, E.; Rebollo Pedruelo, M.; Vasirani, M.; Fernández, A. (2014). Utility-Based Mechanism for Structural Self-Organization in Service-Oriented MAS. ACM Transactions on Autonomous and Adaptive Systems. 9(3):1-24. https://doi.org/10.1145/2651423S12493Sherief Abdallah and Victor Lesser. 2007. Multiagent reinforcement learning and self-organization in a network of agents. In Proceedings of the 6th International Conference on Autonomous Agents and Multiagent Systems. 172--179.Lada A. Adamic and Bernardo A. Huberman. 2002. Zipf’s law and the Internet. Glottometrics 3, 143--150.Muntasir Al-Asfoor, Brendan Neville, and Maria Fasli. 2012. Heuristic resource search in a self-organised distributed multi agent system. In Proceedings of the 6th International Workshop on Self-Organizing Systems. 84--89.Mathieu Aquin, Salman Elahi, and Enrico Motta. 2010. Personal monitoring of Web information exchange: Towards Web lifelogging. In Proceedings of the Web Science Conference.Ulrich Basters and Matthias Klusch. 2006. RS2D: Fast adaptive search for semantic Web services in unstructured p2p networks. In Proceedings of the International Semantic Web Conference. 87--100.Umesh Bellur and Roshan Kulkarni. 2007. Improved matchmaking algorithm for semantic Web services based on bipartite graph matching. In Proceedings of the International Semantic Web Conference. 86--93.Devis Bianchini, Valeria De Antonellis, and Michele Melchiori. 2009. Service-based semantic search in p2p systems. In Proceedings of the European Conference on Web Services. 7--16.Bartosz Biskupski, Jim Dowling, and Jan Sacha. 2007. Properties and mechanisms of self-organizing MANET and P2P systems. ACM Transactions on Autonomous and Adaptive Systems 2, 1, 1--34.Alberto Blanc, Yi-Kai Liu, and Amin Vahdat. 2005. Designing incentives for peer-to-peer routing. In Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies. 374--385.Michael Bowling and Manuela Veloso. 2002. Multiagent learning using a variable learning rate. Artificial Intelligence 136, 215--250.Frances M. T. Brazier, Jeffrey O. Kephart, H. Van Dyke Parunak, and Michael N. Huhns. 2009. Agents and service-oriented computing for autonomic computing: A research agenda. IEEE Internet Computing 13, 3, 82--87.Tyson Condie, Sepandar D. Kamvar, and Hector Garcia-Molina. 2004. Adaptive peer-to-peer topologies. In Proceedings of the 4th International Conference on Peer-to-Peer Computing. 53--62.Arturo Crespo and Hector Garcia-Molina. 2002. Routing indices for peer-to-peer systems. In Proceedings of the 22nd International Conference on Distributed Computing Systems. 23--32.Elena Del Val, Natalia Criado, Carlos Carrascosa, Vicente Julian, Miguel Rebollo, Estefania Argente, and Vicente Botti. 2010. THOMAS: A service-oriented framework for virtual organizations. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’10). 1631--1632.Elena Del Val, Miguel Rebollo, and Vicente Botti. 2011. Introducing homophily to improve semantic service search in a self-adaptive system. In Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems. 1241--1242.Elena Del Val, Miguel Rebollo, and Vicente Botti. 2012a. Enhancing decentralized service discovery in open service-oriented multi-agent systems. Autonomous Agents and Multi-Agent Systems 28, 1, 1--30.Elena Del Val, Miguel Rebollo, and Vicente Botti. 2012b. Promoting cooperation in service-oriented MAS through social plasticity and incentives. Journal of Systems and Software 86, 2, 520--537.Gianni Di Caro, Frederick Ducatelle, and Luca Maria Gambardella. 2005. AntHocNet: An adaptive nature-inspired algorithm for routing in mobile ad hoc networks. European Transactions on Telecommunications 16, 443--455.Ding Ding, Lei Liu, and Hartmut Schmeck. 2010. Service discovery in self-organizing service-oriented environments. In Proceedings of the 2010 IEEE Asia-Pacific Services Computing Conference. 717--724.Sergey N. Dorogovtsev and Jose F. F. Mendes. 2003. Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press.Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony Karageorgos. 2011. Self-Organizing Software: From Natural to Artificial Adaptation. Natural Computing Series.Erik Einhorn and Andreas Mitschele-Thiel. 2008. RLTE: Reinforcement learning for traffic-engineering. In Proceedings of the 2nd International Conference on Autonomous Infrastructure, Management, and Security. 120--133.Nelson Fernandez, Carlos Maldonado, and Carlos Gershenson. 2014. Information measures of complexity, emergence, self-organization, homeostasis, and autopoiesis. In Guided Self-Organization: Inception. Emergence, Complexity and Computation, Vol. 9. Springer, 19--51. DOI: http://dx.doi.org/10.1007/978-3-642-53734-9_2Jose Luis Fernandez-Marquez, Josep Lluis Arcos, and Giovanna Di Marzo Serugendo. 2012. A decentralized approach for detecting dynamically changing diffuse event sources in noisy WSN environments. Applied Artificial Intelligence 26, 4, 376--397. DOI: http://dx.doi.org/10.1080/08839514.2012.653659Agostino Forestiero, Carlo Mastroianni, and Michela Meo. 2009. Self-Chord: A bio-inspired algorithm for structured P2P systems. In Proceedings of the 9th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing. 44--51.Matthew E. Gaston and Marie des Jardins. 2005. Agent-organized networks for multi-agent production and exchange. In Proceedings of the 20th AAAI Conference on Artificial Intelligence. 77--82.Nathan Griffiths and Michael Luck. 2010. Changing neighbours: Improving tag-based cooperation. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems. 249--256.Peter Haase, Ronny Siebes, and Frank van Harmelen. 2008. Expertise-based peer selection in peer-to-peer networks. Knowledge and Information Systems 15, 1, 75--107.Philip N. Howard, Lee Rainee, and Steve Jones. 2001. Days and nights on the Internet. American Behavioural Scientist, 383--404.Bernardo A. Huberman and Lada A. Adamic. 2000. The nature of markets in the WWW. Quarterly Journal of Electronic Commerce 1, 5--12.Michael N. Huhns et al. 2005. Research directions for service-oriented multiagent systems. IEEE Internet Computing 9, 6, 65--70.Tomoko Itao, Tatsuya Suda, Tetsuya Nakamura, Miyuki Imada, Masato Matsuo, and Tomonori Aoyama. 2001. Jack-in-the-Net: Adaptive networking architecture for service emergence. In Proceedings of the Asian-Pacific Conference on Communications. 9.Emily M. Jin, Michelle Girvan, and Mark E. J. Newman. 2001. Structure of growing social networks. Physical Review E 64, 4, 046132.Sachin Kamboj and Keith S. Decker. 2007. Organizational self-design in semi-dynamic environments. In Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems. 335--337.Rahamatullah Khondoker, S. M. Taslim Arif, Nathan Kerr, and Dennis Schwerdel. 2011. Self-organizing communication services in future network architectures. In Proceedings of the 5th International Workshop on Self-Organizing Systems.Matthias Klusch, Benedikt Fries, and Katia Sycara. 2009. OWLS-MX: A hybrid Semantic Web service matchmaker for OWL-S services. Web Semantics Science Services and Agents on the World Wide Web 7, 2, 121--133.Dionisis Kontominas, Paraskevi Raftopoulou, Christos Tryfonopoulos, and Euripides G. M. Petrakis. 2013. DS4: A distributed social and semantic search system. Advances in Information Retrieval 7814, 832--836.Ramachandra Kota, Nicholas Gibbins, and Nicholas R. Jennings. 2012. Decentralized approaches for self-adaptation in agent organizations. ACM Transactions on Autonomous and Adaptive Systems 7, 1, Article No. 1.Paul Lazarsfeld. 1954. Friendship as a social process: A substantive and methodological analysis. In Freedom and Control in Modern Society. Van Nostrand, New York, NY.Paulo Leito. 2013. Towards self-organized service-oriented multi-agent systems. In Service Orientation in Holonic and Multi Agent Manufacturing and Robotics. Studies in Computational Intelligence, Vol. 472. Springer, 41--56.W. Sabrina Lin, Hong Vikcy Zhao, and K. J. Ray Liu. 2009. Incentive cooperation strategies for peer-to-peer live multimedia streaming social networks. IEEE Transactions on Multimedia 11, 3, 396--412.Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. 2001. Semantic Web services. IEEE Intelligent Systems 16, 2, 46--53.Miller McPherson, Lynn Smith-Lovin, and James Cook. 2001. Birds of a feather: Homophily in social networks. Annual Review of Sociology 27, 415--444.Vivek Nallur and Rami Bahsoon. 2012. A decentralized self-adaptation mechanism for service-based applications in the cloud. IEEE Transactions on Software Engineering 99, 591--612.Aris Ouksel, Yair Babad, and Thomas Tesch. 2004. Matchmaking software agents in B2B markets. In Proceedings of the 37th Annual Hawaii International Conference on System Sciences. 1--9.Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara. 2002. Semantic matching of Web services capabilities. In Proceedings of the 1st International Semantic Web Conference. 333--347.Leonid Peshkin and Virginia Savova. 2002. Reinforcement learning for adaptive routing. In Proceedings of the 2002 International Conference on Neural Networks (IJCNN’02). 1825--1830.Paraskevi Raftopoulou and Euripides G. M. Petrakis. 2008. iCluster: A self-organizing overlay network for P2P information retrieval. In Proceedings of the 30th European Conference on Advances in Information Retrieval (ECIR’08). 65--76.Sharmila Savarimuthu, Maryam Purvis, Martin Purvis, and Bastin Tony Roy Savarimuthu. 2011. Mechanisms for the self-organization of peer groups in agent societies. In Multi-Agent-Based Simulation XI. Lecture Notes in Computer Science, Vol. 6532. Springer, 93--107.Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony Karageorgos. 2005. Self-organization in multi-agent systems. Knowledge Engineering Review 20, 2, 165--189.Abdul Khalique Shaikh, Saadat M. Alhashmi, and Rajendran Parthiban. 2012. A semantic impact in decentralized resource discovery mechanism for grid computing environments. In Algorithms and Architectures for Parallel Processing. Lecture Notes in Computer Science, Vol. 7440. Springer, 206--216.Qixiang Sun and Hector Garcia-Molina. 2004. SLIC: A selfish link-based incentive mechanism for unstructured peer-to-peer networks. In Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04). 506--515.Mirko Viroli and Franco Zambonelli. 2010. A biochemical approach to adaptive service ecosystems. Information Sciences 180, 10, 1876--1892. DOI: http://dx.doi.org/10.1016/j.ins.2009.11.021Li Wang. 2011. SoFA: An expert-driven, self-organization peer-to-peer semantic communities for network resource management. Expert Systems with Applications 38, 1, 94--105.Kevin Werbach. 2000. Syndication—the emerging model for business in the Internet era. Harvard Business Review 78, 3, 84--93, 214.Tom Wolf and Tom Holvoet. 2005. Emergence versus self-organisation: Different concepts but promising when combined. In Engineering Self-Organising Systems. Lecture Notes in Computer Science, Vol. 3464. Springer, 1--15.Haizheng Zhang, W. Bruce Croft, Brian Levine, and Victor Lesser. 2004. A multi-agent approach for peer-to-peer based information retrieval system. In Proceedings of the 3rd International Conference on Autonomous Agents and Multiagent Systems, Vol. 1. 456--463.Ming Zhong. 2006. Popularity-biased random walks for peer-to-peer search under the square-root principle. In Proceedings of the 5th International Workshop on Peer-to-Peer Systems

    Ανανεώνοντας τις συνδέσεις των κόμβων σε σημασιολογικά δίκτυα επικάλυψης

    No full text
    Today's content providers are naturally distributed and produce large amounts of information every day, making peer-to-peer data management a promis- ing approach o®ering scalability, adaptivity to dynamics and failure resilience. The management of large volumes of data in peer-to-peer networks has generated ad- ditional interest in methods for e®ective network organisation based on providers' contents and consequently, in methods supporting information retrieval. Overlay architectures (or overlay networks) are being introduced as tools for the organisa- tion and sharing of information residing in a network of peers. Moreover, semantic overlay networks partition the overlay layer by clustering the data sources. This is achieved through a rewiring protocol that is executed independently by each peer. The purpose of this protocol is to establish connections among peers being semanti- cally, thematically or socially similar (i.e., peers sharing similar interests). By this, the problem of ?nding the most relevant resources is reduced to one of locating the clusters similar to the query. In this thesis, we present iCluster, a generic architecture for supporting full- °edged information retrieval in large-scale peer-to-peer networks, along with its associated organisation and query forwarding protocols. The main focus of this work is on rewiring. We study the functional issues related to peer rewiring and discuss a number of choices in designing the rewiring strategy. In addition, we introduce the concept of clustering e±ciency, a measure that quanti?es the quality of network organisation by exploiting the underlying network structure. Clustering e±ciency is used for evaluating the performance of rewiring. We study the system performance and identify the rewiring protocol that proves e±cient under peer churn. Finally, we apply our architecture to a digital library use case and support searching and - xiii - ?ltering functionality using the same infrastructure. The experimental evaluation with real-word data and queries demonstrates that iCluster achieves signi?cant performance improvements (in terms of communication load and retrieval accuracy) over a well-known state-of-the-art peer-to-peer clus- tering method. Compared to exhaustive search by °ooding, iCluster exchanged a small loss in retrieval accuracy for much less message °ow. In addition, the proposed distributed protocols are proven e±cient under peer churn, shown to achieve high retrieval accuracy and scale up well for large networks. Our experimental results con?rm the dependency between rewiring strategies and retrieval performance, and give insights on the trade-o®s involved in the selection of a rewiring strategy. -

    A measure for cluster cohesion in semantic overlay networks

    No full text
    Semantic overlay networks cluster peers that are semantically, thematically or socially close into groups by means of a rewiring procedure that is periodically executed by each peer. Rewiring proceeds by establishing new connections to similar peers, and by discarding connections that are outdated or pointing to dissimilar peers. This process aims at improving cluster quality (how well peers with similar content are clustered together) and by this, at improving the flow of information in the network by reducing the number of messages that are exchanged. Therefore, measuring the quality of clustering is an important issue by itself. This is exactly the issue this work is dealing with. In this paper, we introduce a new clustering measure that takes into account the whole neighborhood of a peer (rather than its direct neighbors) thus, providing better insight on the quality of the underlying clustered organisation. Our experimental evaluation with real-word data and queries confirms our assumption that the new measure is better suited for measuring clustering quality than other known measures, such as the (generalised) clustering coefficient

    Semantic Similarity Methods in WordNet and their Application to Information Retrieval on the Web

    No full text
    Semantic Similarity relates to computing the similarity between concepts which are not lexicographically similar. We investigate approaches to computing semantic similarity by mapping terms (concepts) to an ontology and by examining their relationships in that ontology. Some of the most popular semantic similarity methods are implemented and evaluated using WordNet as the underlying reference ontology. Building upon the idea of semantic similarity, a novel information retrieval method is also proposed. This method is capable of detecting similarities between documents containing semantically similar but not necessarily lexicographically similar terms. The proposed method has been evaluated in retrieval of images and documents on the Web. The experimental results demonstrated very promising performance improvements over state-of-the-art information retrieval methods
    corecore